Learning nonlinear multiregression networks based on evolutionary computation

نویسندگان

  • Kwong-Sak Leung
  • Man Leung Wong
  • Wai Lam
  • Zhenyuan Wang
  • Kebin Xu
چکیده

This paper describes a novel knowledge discovery and data mining framework dealing with nonlinear interactions among domain attributes. Our network-based model provides an effective and efficient reasoning procedure to perform prediction and decision making. Unlike many existing paradigms based on linear models, the attribute relationship in our framework is represented by nonlinear nonnegative multiregressions based on the Choquet integral. This kind of multiregression is able to model a rich set of nonlinear interactions directly. Our framework involves two layers. The outer layer is a network structure consisting of network elements as its components, while the inner layer is concerned with a particular network element modeled by Choquet integrals. We develop a fast double optimization algorithm (FDOA) for learning the multiregression coefficients of a single network element. Using this local learning component and multiregression-residual-cost evolutionary programming (MRCEP), we propose a global learning algorithm, called MRCEP-FDOA, for discovering the network structures and their elements from databases. We have conducted a series of experiments to assess the effectiveness of our algorithm and investigate the performance under different parameter combinations, as well as sizes of the training data sets. The empirical results demonstrate that our framework can successfully discover the target network structure and the regression coefficients.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nonlinear nonnegative multiregressions based on Choquet integrals

Using a nonadditive set function to describe the interaction among attributes, a new nonlinear nonnegative multiregression is established based on Choquet integrals with respect to the set function. Regarding the values of the set function as unknown regression parameters, an evolutionary computation can be used to determine them when necessary data are available. Such a model is a generalizati...

متن کامل

Verification of an Evolutionary-based Wavelet Neural Network Model for Nonlinear Function Approximation

Nonlinear function approximation is one of the most important tasks in system analysis and identification. Several models have been presented to achieve an accurate approximation on nonlinear mathematics functions. However, the majority of the models are specific to certain problems and systems. In this paper, an evolutionary-based wavelet neural network model is proposed for structure definiti...

متن کامل

Novel Radial Basis Function Neural Networks based on Probabilistic Evolutionary and Gaussian Mixture Model for Satellites Optimum Selection

In this study, two novel learning algorithms have been applied on Radial Basis Function Neural Network (RBFNN) to approximate the functions with high non-linear order. The Probabilistic Evolutionary (PE) and Gaussian Mixture Model (GMM) techniques are proposed to significantly minimize the error functions. The main idea is concerning the various strategies to optimize the procedure of Gradient ...

متن کامل

Neural Network Learning Based on Chaos

Chaos and fractals are novel fields of physics and mathematics showing up a new way of universe viewpoint and creating many ideas to solve several present problems. In this paper, a novel algorithm based on the chaotic sequence generator with the highest ability to adapt and reach the global optima is proposed. The adaptive ability of proposal algorithm is flexible in 2 steps. The first one is ...

متن کامل

A New Method for Geolocating of Radiation Sources Based on Evolutionary Computation of TDOA Equations

In this article a new method is introduced for geolocating of signal emitters which is based on evolutionary computation (EC) concept. In the proposed method two well-known members of EC techniques including Bees Algorithm (BA) and Genetic Algorithm (GA), are utilized to estimate the positions of emitters by optimizing the hyperbola equations which have been resulted from Time Difference of Arr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • IEEE transactions on systems, man, and cybernetics. Part B, Cybernetics : a publication of the IEEE Systems, Man, and Cybernetics Society

دوره 32 5  شماره 

صفحات  -

تاریخ انتشار 2002